EA163 Potentiostat
- Modular potentiostat
- 4 modes: potentiostat, galvanostat, ammeter and voltmeter
Replaced by EA165 in December 2017
EA165 has similar specification but with a higher max current
This modular potentiostat is perfect for cyclic voltammetry and electroanalytical chemistry, and can use two (working and counter), or three (working, auxiliary and reference) electrodes. It can also operate as a galvanostat, ZRA (zero resistance ammeter), and high impedance voltmeter. It must be used together with any e-corder model.
The bandwidth of the EA163 is 100 kHz and so it is suitable for use with the Z100 Electrochemical Impedance Analyzer.
Patch-clamp type experiments can be performed on tethered membrane systems with a tethaPatch for studies of ion channels using Scope and Chart software.
Note that the EA163 Potentiostat supersedes earlier models (EA161 and EA160) in this series.
Research Areas
- Biosensors
- Biotechnology
- Electrochemistry
- Microdialysis
- Neurochemistry
- Solar and Fuel Cells
- Tethered Membrane
Application Notes
- Plotting the IV Curve of a Solar Cell in EChem Software
- Analysis of Antioxidants using Cyclic Voltammetry
- Connecting 3rd Party Potentiostats to the e-corder
- Software for Electrochemistry Techniques
- Cleaning and Polishing Voltammetric Electrodes
- Cyclic Voltammetry: Hints and Tips
- How to Choose a Potentiostat
Teaching Notes
- EXP001 Anodic Stripping Voltammetry
- EXP002 Cyclic Voltammetry of Ferrocene Carboxylic Acid
- EXP004a Measurement of Iron Corrosion Exchange Current
Citations
-
Quantifying molecular-level cell adhesion on electroactive conducting polymers using electrochemical-single cell force spectroscopy.
H Zhang, PJ Molino, GG Wallace, and MJ Higgins, Scientific reports, 5, 13334, 2015. DOI: 10.1038/srep13334 - Functionalised inherently conducting polymers as low biofouling materials. Binbin Zhang, Alex R. Nagle, Gordon G. Wallace, Timothy W. Hanks and Paul J. Molino, Biofouling: The Journal of Bioadhesion and Biofilm Research, 31, 493-502, 2015. DOI: 10.1080/08927014.2015.1065487
-
Electrochemistry of pertechnetate on ultramicroelectrode: A new quality control for radiopharmaceuticals manufactured at hospital in nuclear medicine. Guillaume Herlem, Orland Angoue, Tijani Gharbi, Hatem Boulahdour, Electrochemistry Communications, 51, 76–80, 2015. DOI: 10.1016/j.elecom.2014.12.011
-
Electrochemical codeposition of molybdenum and selenium. Remigiusz Kowalik, Dawid Kutyła, Krzysztof Mech, Mirosław Wróbel, Tomasz Tokarski, and Piotr Żabiński, Metallurgy and Foundry Engineering, 41, 7–16, 2015. DOI: 10.7494/mafe.2015.41.1.7
-
In vivo and In vitro Comparison of the Charge Injection Capacity of Platinum Macro Electrodes. Ronald T. Leung, Mohit N. Shivdasani, David A.X. Nayagam, and Robert K. Shepherd, IEEE Transactions on Biomedical Engineering, in press, 2014. DOI: 10.1109/TBME.2014.2366514
-
Fabrication of planarised conductively patterned diamond for bio-applications. Wei Tong, Kate Fox, Kumaravelu Ganesan, Ann M. Turnley, Olga Shimoni, Phong A. Tran, Alexander Lohrmann, Thomas McFarlane, Arman Ahnood, David J. Garrett, Hamish Meffin, Neil M. O'Brien-Simpson, Eric C. Reynolds, Steven Prawer, Materials Science and Engineering: C, 43, 135–144, 2014. DOI: 10.1016/j.msec.2014.07.016
-
Novel Organic D-π-2A Sensitizer for Dye Sensitized Solar Cells and Its Electron Transfer Kinetics on TiO2 Surface. Lihong Yu, Jingyu Xi, Hung Tat Chan, Tao Su, Lucy Jane Antrobus, Bin Tong, Yuping Dong, Wai Kin Chan, and David Lee Phillips, Journal of Physical Chemistry C, 117, 2041–2052, 2013. DOI: 10.1021/jp3113182
-
Surface modification of polypyrrole/biopolymer composites for controlled protein and cellular adhesion. Paul J. Molino, BinBin Zhang, Gordon G. Wallace, and Timothy W. Hanks, Biofouling: The Journal of Bioadhesion and Biofilm Research, 29, 1155-1167, 2013. DOI:10.1080/08927014.2013.830110
-
Scale up considerations for sediment microbial fuel cells. Lewis Hsu, Bart Chadwick, Jeff Kagan, Ryan Thacher, Adriane Wotawa-Bergen, and Ken Richte, RSC Advances, 3, 15947-15954, 2013. DOI: 10.1039/C3RA43180K
-
Sensitive determination of paraquat by square wave anodic stripping voltammetry with chitin modified carbon paste electrode. H. El Harmoudi, M. Achak, A. Farahi, S. Lahrich, L. El Gaini, M. Abdennouri, A. Bouzidi, M. Bakasse, M.A. El Mhammedi, Talanta, 115, 172–177, 2013. DOI:10.1016/j.talanta.2013.04.002
-
Electrical stimulation of retinal ganglion cells with diamond and the development of an all diamond retinal prosthesis. Alex E. Hadjinicolaou, Ronald T. Leung, David J. Garrett, Kumaravelu Ganesan, Kate Fox, David A.X. Nayagam, Mohit N. Shivdasani, Hamish Meffin, Michael R. Ibbotson, Steven Prawer, Brendan J. O’Brien. Biomaterials 33, 5812-5820, 2012. DOI: 10.1016/j.biomaterials.2012.04.063
- Characterization of PbO2 coating electrodeposited onto stainless steel 316L substrate for using as PEMFC's bipolar plates. N. Mohammadia, M. Yaria, S.R. Allahkaram. Surface and Coatings Technology, 236, 341–346, 2013. DOI: 10.1016/j.surfcoat.2013.10.010
-
Sensitive determination of paraquat by square wave anodic stripping voltammetry with chitin modified carbon paste electrodeH. El Harmoudi, M. Achak, A. Farahi, S. Lahrich, L. El Gaini, M. Abdennouri, A. Bouzidi, M. Bakasse, M.A. El Mhammed. Talanta 115, 172–177, 2013. DOI: 10.1016/j.talanta.2013.04.002
- Ion-selective detection of non-intercalating Na+ using competitive inhibition of K+ intercalation in Prussian blue nanotubes sensor. Jin Qiang Ang, Binh Thi Thanh Nguyen, Yan Huang, Chee-Seng Toh. Electrochimica Acta, 55, 7903–7908, 2010.
- Fabrication and characterization of single walled nanotube supercapacitor electrodes with uniform pores using electrophoretic deposition. Joshua J. Moore, Jin Hee Kang, John Z. Wen. Materials Chemistry and Physics, 134, 68–73, 2012. DOI: 10.1016/j.matchemphys.2012.02.030
- Intrinsic activity and poisoning rate for HCOOH oxidation on platinum stepped surfaces. Vitali Grozovski, Victor Climent, Enrique Herrero, and Juan M. Feliu. Physical Chemistry Chemical Physics, 12, 8822–8831,2010.
- Liquid crystalline dialkyl-substituted thienylethenyl [1] benzothieno[3,2-b] benzothiophene derivatives for organic thin film transistors. Ki Hwa Jung, Kyung Hwan Kim, Dong Hoon Lee, Dae Sung Jung, Chan Eon Park, and Dong Hoon Choi. Organic Electronics, 11, 1584–1593, 2010.
- Flow electroanalytical system based on cyclam-modified graphite felt electrodes for lead detection. Rihab Nasraoui, Didier Floner, Christine Paul-Roth, Florence Geneste. Journal of Electroanalytical Chemistry, 638, 9–14, 2010.
- Polyterthiophene as an electrostimulated controlled drug release material of therapeutic levels of dexamethasone. Grace Stevenson, Simon E. Moulton, Peter C. Innis, and Gordon G. Wallace. Synthetic Metals 160, 1107–1114, 2010.
- Electron transfer from Proteus vulgaris to a covalently assembled, single walled carbon nanotube electrode functionalised with osmium bipyridine complex: Application to a whole cell biosensor. Frankie J.Rawson, David J.Garrett, Donal Leech, Alison J.Downard, and Keith H.R.Baronian. Biosensors and Bioelectronics, 26, 2383-2389, 2010.
- Impact of co-incorporating laminin peptide dopants and neurotrophic growth factors on conducting polymer properties. Rylie A. Green, Nigel H. Lovell, an Laura A. Poole-Warren, Acta Biomaterialia, 6, 63–71, 2010.
- Affinity sensor using 3-aminophenylboronic acid for bacteria detection. Rodtichoti Wannapo, Proespichaya Kanatharana, Warakorn Limbut, Apon Numnuam, Punnee Asawatreratanakul, Chongdee Thammakhet, Panote Thavarungkul, Biosensors and Bioelectronics 26, 357–364, 2010.
-
Electrochemical Method Applicable to Treatment of Wastewater from Nitrotriazolone Production
Lynne Wallace, Michael P. Cronin, Anthony I. Day and Damian P. Buck.
Environmental Science and Technology, 43, 1993–1998, 2009. - Hybrid Tin Oxide Nanowires as Stable and High Capacity Anodes for Li-Ion Batteries. Praveen Meduri, Chandrashekhar Pendyala, Vivekanand Kumar, Gamini U. Sumanasekera and Mahendra K. Sunkara. Nano Letters, 9, 612–616, 2009.
- Characterization of Hemoglobin Immobilized in MgAl-Layered Double Hydroxides by the Coprecipitation Method. Khaled Charradi, Claude Forano, Vanessa Prevot, Dominique Madern, Abdesslem Ben Haj Amara and Christine Mousty. Langmuir, 26, 9997–10004, 2010.
- Cathodic Voltammetry of Nitrobenzene at Titanium in Micellar Solution. Inam Ul Haque, and Muqaddas Tariq. Journal of the Chemical Society of Pakistan, 32, 284-289, 2010.
-
Range settings (and resolution):
100 mA (3.13 µA) 50 mA (1.56 µA) 20 mA (625 nA)
10 mA (313 nA) 5 mA (156 nA) 2 mA (62.5 nA)
1 mA (31.3 nA) 500 nA (15.6 nA) 200 µA (6.25 nA)
100 µA (3.13 nA) 50 µA (1.56 nA) 20 µA (625 pA)
10 µA (313 pA) 5 µA (156 pA) 2 µA (62.5 pA)
1 µA (31.3 pA) 500 nA (15.6 pA) 200 nA (6.25 pA)
100 nA (3.13 pA) 50 nA (1.56 pA) 20 nA (625 fA) - Input resistance: 1013 ohms
- Bandwidth: 100 kHz
- iR compensation: up to 10 Mohms
- Applied potential: ±10 V maximum
- Operating modes: Potentiostat, Galvanostat, ZRA (zero resistance ammeter), Open Circuit Potential.
More Information
EA163_Potentiostat (170 KB PDF)
Also see:
ES500 Chart and Scope Software
ES260 EChem Electrochemistry Software for Voltammetric Techniques
ET014 EChem Electrode Kit
EA167 Dual Reference Adaptor